In general, you select a lattice type based on the type of
crystal you are studying. Then you enter the information needed
to describe this lattice. For example, for a face-centered
cubic (fcc) lattice, you enter the cubic lattice
constant a, and setlat constructs the primitive
vectors:
For many lattices there are two options for entering the
lattice parameters. For example, again using the fcc
lattice, if you select lattice option +1 you enter the cubic
lattice constant a. If, however, you select lattice
option -1, you enter the fcc unit cell volume
V and the program calculates
Index |
Description |
Input |
Code Defines |
Primitive Vectors |
0 |
Arbitrary Lattice |
All lattice parameters |
Volume |
a1 |
= |
(a1x,a1y,a1z) |
a2 |
= |
(a2x,a2y,a2z) |
a3 |
= |
(a3x,a3y,a3z) |
|
1 |
face-centered cubic
(fcc) lattice |
Cubic Lattice Constant a |
V = ¼ a3 |
a1 |
= |
( 0 , ½ a, ½ a) |
a2 |
= |
(½ a, 0, ½ a) |
a3 |
= |
(½ a, ½ a, 0) |
|
-1 |
Unit Cell Volume V |
a = (4 V)1/3 |
2 |
body-centered cubic (bcc)
lattice |
Cubic Lattice Constant a |
V = ½ a3 |
a1 |
= |
( -½ a, ½ a, ½ a) |
a2 |
= |
(½ a, -½ a, ½ a) |
a3 |
= |
(½ a, ½ a, -½ a) |
|
-2 |
Unit Cell Volume V |
a = (2 V)1/3 |
3 |
hexagonal lattice |
a, c |
V = ½ 3½
a2c |
a1 |
= |
( ½ a, - ½ 3½ a,
0) |
a2 |
= |
( ½ a, + ½ 3½ a,
0) |
a3 |
= |
( 0 , 0 , c ) |
|
-3 |
Unit Cell Volume V, c/a |
a = [2V/(c/a)]1/3,
c = (c/a) a |
4 |
simple cubic (sc) lattice |
Cubic Lattice Constant a |
V = a3 |
a1 |
= |
( a , 0 , 0 ) |
a2 |
= |
( 0 , a , 0 ) |
a3 |
= |
( 0 , 0 , a ) |
|
-4 |
Unit Cell Volume V |
a = V1/3 |
5 |
simple tetragonal lattice |
a , c |
V = a2 c |
a1 |
= |
( a , 0 , 0 ) |
a2 |
= |
( 0 , a , 0 ) |
a3 |
= |
( 0 , 0 , c ) |
|
-5 |
V, (c/a) |
a=[V/(c/a)]1/3 ,
c=(c/a) a |
6 |
body-centered tetragonal lattice (bct) |
a , c |
V = ½ a2
c |
a1 |
= |
( a , 0 , 0 ) |
a2 |
= |
( 0 , a , 0 ) |
a3 |
= |
( ½ a , ½ a , ½ c ) |
|
-6 |
V, (c/a) |
a=[2 V/(c/a)]1/3 ,
c=(c/a) a |
7 |
simple orthorhombic lattice |
a, b, c |
V = a b c |
a1 |
= |
( a , 0 , 0 ) |
a2 |
= |
( 0 , b , 0 ) |
a3 |
= |
( 0 , 0 , c ) |
|
-7 |
V, (b/a), (c/a) |
a=[V/(b/a)/(c/a)]1/3,
b=(b/a) a,
c=(c/a) a |
8 |
base-centered orthorhombic lattice
(bco) |
a, b, c |
V = ½ a b c |
a1 |
= |
( ½ a , - ½ b , 0
) |
a2 |
= |
( ½ a , + ½ b , 0
) |
a3 |
= |
( 0 , 0 , c ) |
|
-8 |
V, (b/a), (c/a) |
a=[2 V/(b/a)/(c/a)]1/3,
b=(b/a) a,
c=(c/a) a |
9 |
rotated simple tetragonal lattice |
a, c |
V = ½
a2c |
a1 |
= |
( ½ a , - ½ a , 0
) |
a2 |
= |
( ½ a , + ½ a , 0
) |
a3 |
= |
( 0 , 0 , c ) |
|
-9 |
V, (c/a) |
a=[2 V/(c/a)]1/3,
c=(c/a) a |
10 |
face-centered tetragonal lattice
(fct) |
a, c |
V = ¼
a2c |
a1 |
= |
( ½ a , - ½ a , 0
) |
a2 |
= |
( ½ a , + ½ a , 0
) |
a3 |
= |
( ½ a , 0 , ½ c
) |
|
-10 |
V, (c/a) |
a=[4 V/(c/a)]1/3,
c=(c/a) a |
11 |
face-centered tetragonal (fct)
lattice with fcc-like vectors |
a, c |
V = ¼
a2c |
a1 |
= |
( 0 , ½ a, ½ c) |
a2 |
= |
(½ a, 0, ½ c) |
a3 |
= |
(½ a, ½ a, 0) |
|
-11 |
V, c/a |
a = [4
V/(c/a)]1/3,
c = (c/a) a |
12 |
rhombohedral lattice |
a, b (see primitive vectors) |
V=a3+2b3-3
ab2,
theta=arccos[b(2a+b)/(
a2+2b2] |
a1 |
= |
( a , b , b ) |
a2 |
= |
( b , a , b ) |
a3 |
= |
( b , b , a ) |
|
-12 |
V, theta (angle between vectors) |
a, b |
13 |
body-centered tetragonal lattice (bct) with
bcc-like vectors |
a , c |
V = ½ a2
c |
a1 |
= |
( -½ a , ½ a ,
½ c ) |
a2 |
= |
( ½ a , -½ a ,
½ c ) |
a3 |
= |
( ½ a , ½ a ,
-½ c ) |
|
-13 |
V, (c/a) |
a=[2 V/(c/a)]1/3 ,
c=(c/a) a |
14 |
base-centered orthorhombic lattice (bco)
with angle θ specified between the base vectors. Note
that "a" is the length of one of the base
vectors |
a , c, θ |
V = a2 c
sin θ |
a1 |
= |
( a cos(½ θ) , - a
sin(½ θ) , 0 ) |
a2 |
= |
( a cos(½ θ) , + a
sin(½ θ) , 0 ) |
a3 |
= |
( 0 , 0 , c ) |
|
-14 |
V, (c/a), θ |
a={V/[(c/a)
sinθ]}1/3 ,
c=(c/a) a |
Note that several structures (e.g., the four "different"
centered-tetragonal lattices) are merely different
representations of the same lattice. Use the representation
which is most convenient for your work.