Last Modified 23 January 2002

Notes on the Tight-Binding parameters

These are the tight-binding parameter files associated with the paper Applications of a tight-binding total energy method for transition and noble metals: Elastic Constants, Vacancies, and Surfaces of Monatomic Metals by Michael J. Mehl and Dimitrios A. Papaconstantopoulos of the Complex Systems Theory Branch, Naval Research Laboratory, Washington, DC 20375-5345 USA.

The labels associated with the tight-binding parameters reference the equations found in the above paper.

Comments or questions about these parameters should be addressed (Privacy Advisory) to the authors.

Notes:

References:

  1. Tight-binding total-energy method for transition and noble metals, Phys. Rev. B Rapid Comm. 50, 14694 (1994).
  2. Application of a new tight-binding method for transition metals: manganese, Europhysics. Lett. 31, 537 (1995).
  3. Applications of a tight-binding total energy method for transition and noble metals: Elastic Constants, Vacancies, and Surfaces of Monatomic Metals, Phys. Rev. B 54, 4519 (1996).
  4. Tight-Binding Parametrization of First-Principles Results in Computational Materials Science, C. Fong, ed. (World Scientific Publishing, Singapore, 1998).
  5. Applications of a New Tight-Binding Total Energy Method, Proceedings of the International Symposium on Novel Materials, Bhubaneswar, India, March 3-7, 1997, edited by B.K. Rao (1998), pp. 393-403.
  6. Application of a tight-binding total-energy method for Al, Ga, and In, Phys. Rev. B 57 R2013-R2016, (15 Jan 1998).
  7. Tight-Binding Hamiltonians for Carbon and Silicon, Tight-Binding Approach to Computational Materials Science, P. E. A. Turchi, A. Gonis, and L. Columbo, eds., MRS Proceedings 491, 221, (Materials Research Society, Warrendale PA, 1998).
  8. Ab Initio Based Tight-Binding Hamiltonian for the Dissociation of Molecules at Surfaces, Axel Gross, Matthias Scheffler, Michael J. Mehl and Dimitrios A. Papaconstantopoulos, Phys. Rev. Lett. 82, 1209-12 (1999).
  9. Tight-binding study of stacking fault energies and the Rice criterion of ductility in the fcc metals, M. J. Mehl, D. A. Papaconstantopoulos, N. Kioussis, and M. Herbranson, Phys. Rev. B 61, 4894 (2000).
  10. ``Energetic, vibrational, and electronic properties of silicon using a nonorthogonal tight-binding model,'' N. Bernstein, M. J. Mehl, D. A. Papaconstantopoulos, N. I. Papanicolaou, M. Z. Bazant, and E. Kaxiras, Phys. Rev. B 62, 4477 (2000).
  11. ``The Slater-Koster Tight-Binding Method: A Computationally Efficient and Accurate Approach,'' (preprint) Dimitrios A. Papaconstantopoulos and Michael J. Mehl, to appear in Tight-Binding Hamiltonians and their Applications, P. Turchi, ed. (Springer-Verlag). (Review Article).
  12. ``Transferable tight binding parameters for ferromagnetic and paramagnetic iron,'' N.C. Bacalis, D.A. Papaconstantopoulos, M.J. Mehl, and M Lach-hab, Physica B 296, 125 (2001).
  13. ``Tight-binding Hamiltonians for realistic electronic structure calculations,'' D. A. Papaconstantopoulos, M. Lach-hab, and M. J. Mehl, Physica B 296, 129 (2001).
  14. ``Dynamical properties of Au from tight-binding molecular-dynamics simulations,'' F. Kirchhoff, M. J. Mehl, N. I. Papanicolaou, D. A. Papaconstantopoulos, and F. S. Khan, Phys. Rev. B 63, 195101 (2001). (A hypertext PDF preprint is also available.)
  15. ``Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom methods,'' Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, Phys. Rev. B 63, 224106 (2001).
  16. ``Tight-binding description of the electronic structure and total energy of tin,'' Brahim Akdim, D. A. Papaconstantopoulos, and M. J. Mehl, Phil. Mag. B 82, 47 (2002).
-----------------------------------

Return to the Tight-binding parameters periodic table.

Return to the Code 6390 Home Page.