Last Modified 29 May 1998
If you've followed the steps on the setup page, your working directory should now look something like this:
$ ls -l total 56 -rw-r--r-- 2 mehl usr 6960 May 29 13:31 SKIN -r--r--r-- 2 mehl usr 7221 May 29 13:01 bccc44.08 -r--r--r-- 2 mehl usr 7200 May 29 13:01 nb_par -rw-r--r-- 2 mehl usr 1559 May 29 13:31 spcgrp
Now run the static code in this directory. You'll get something like this:
$ static > output $ ls -l -rw-r--r-- 1 mehl bind 630 May 29 13:51 SKENG -rw-r--r-- 2 mehl usr 6960 May 29 13:31 SKIN -rw-r--r-- 1 mehl bind 32574 May 29 13:51 SKOUT -r--r--r-- 2 mehl usr 7221 May 29 13:01 bccc44.08 -r--r--r-- 2 mehl usr 7200 May 29 13:01 nb_par -rw-r--r-- 1 mehl bind 24178 May 29 13:51 output -rw-r--r-- 2 mehl usr 1559 May 29 13:31 spcgrp
As usual, we are most interested in the SKENG file:
e6^2= 0.0000 121.251836 .130621233 -.026252012 e6^2= 0.0005 121.251836 .130748653 -.026130711 e6^2= 0.0010 121.251836 .130772820 -.026033556 e6^2= 0.0020 121.251836 .130640009 -.025855516 e6^2= 0.0025 121.251836 .130538390 -.025763392 e6^2= 0.0030 121.251836 .130443331 -.025663667 e6^2= 0.0040 121.251836 .130374474 -.025439639 e6^2= 0.0050 121.251836 .130417789 -.025200571 e6^2= 0.0075 121.251836 .130847311 -.024573468 e6^2= 0.0100 121.251836 .131691173 -.023917255
The energy increases monotonically with strain, supporting our notion that the bcc phase is the the ground state. Now remember that Equation 2 tells us that the energy E should be close to a linear function of the squared strain e62. We'll therefore write a gnuplot script, nbfit.gnu, which fits this data to the functional form:
Note that in (3) we know the volume V, and want to determine the remaining parameters E0, C44, a, and b to best fit the data in SKENG.
Now run the script (which will leave behind a file nbplot.gnu for posterity):
$ gnuplot nbfit.gnu Current Volume is 121.251836 Correct if necessary Pressto continue [If the volume is not correct, edit cufit.gnu to fix it.] [fitting information deleted. See fit.log.] Found C_{44} = 41.2367025059893 GPa at V = 121.251836 Bohr^3 Press to conclude
The fit finds C44 = 41 GPa. This should be compared to the experimental value of 29 GPa and the first-principles value of 25 &GPa. Our value is a again a little high.
Return to the setup page.
Look at other examples.
Get other parameters from the Tight-binding periodic table.
Return to the static Reference Manual.