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We have used the full-potential linearized-augmented-plane-wave (LAPW) method to perform
electronic-structure calculations for the palladium-hydrogen system in the rocksalt structure for the stat-
ic lattice and for the cases of hydrogen displacements in the { 100), {110), and (111 directions. Utiliz-
ing the LAPW total energies, and the approximation of an isotropic anharmonic oscillator, we have
determined the zone-center optic modes for PdH, PdD, and PdT and find very good agreement with ex-
periment. Using our lattice-dynamics results and our calculations of the electron-phonon interaction in
the rigid-muffin-tin approximation, we have determined the superconducting coupling parameter A and
T. for these three hydrides. We find that the inverse isotope effect is semiquantitatively accounted for by
the anharmonic lattice dynamics, without assuming an explicit dependence of the electron-phonon in-
teraction on hydrogen isotope, in agreement with earlier calculations. However, there is a significant
quantitative variation of the isotope effect with the value of the Coulomb pseudopotential parameter pu*,
which must be estimated. We also estimate the effect of pressure on T, and on the isotope effect.

I. INTRODUCTION

The palladium-hydrogen system has exhibited many
unusual properties, including strong hydrogen anhar-
monicity and the occurrence of superconductivity with a
hydrogen isotope effect that is inverse, or opposite, to
what is usually observed in superconductors.! That is,
the sequence PAH — PdD — PdT shows an increasing
superconducting transition temperature, opposite to the
norm. In addition, the hydrides are good superconduc-
tors while the parent transition metal Pd does not super-
conduct in its stoichiometric state, presumably because of
incipient magnetic behavior driven by a large Fermi-level
density of states.

Early after the discovery of superconductivity in the
palladium-hydrogen system? it was proposed that the in-
verse isotope effect was related to the hydrogen anhar-
monicity in the palladium lattice,’ and a number of publi-
cations followed with detailed numerical calculations that
appeared to support that interpretation.*”’ These calcu-
lations utilized neutron diffraction results for the lattice
dynamics®~!! of the hydrides which showed anomalously
soft hydrogen optic modes related to the anharmonicity
of the H or D motion, together with electronic-structure
results for the electron-phonon interaction. The latter
calculations were performed using the same electronic
structure for PdH, PdD, or PdT, assuming that the
anharmonicity did not have a significant effect on the
electronic-structure-derived quantities, with the inverse
isotope effect coming from the lattice-dynamics part of
the superconducting parameters. There have been sug-
gestions that the effect of an isotope dependence of the
electronic structure is important for the inverse isotope
effect. 1?13

More recently, Rowe et al.!* presented experimental
results on the lattice dynamics of the PdT, system which,
together with refined interpretations of the earlier neu-
tron diffraction studies of the PdH and PdD systems, led
them to conclude that there was a serious discrepancy be-
tween the isotope effect results based on assuming an
isotope-independent electron-phonon interaction, and ex-
periment. That work, and the resurgence of interest in
the general area of the isotope effect due to the observed
anomalous behavior of the high-T, oxides in this re-
gard,15 has stimulated us to perform a new, detailed study
of the isotope effect in the palladium-hydrogen system,
including a first-principles determination of the H, D,
and T lattice dynamics as a function of volume. We con-
clude that the major part of the inverse isotope effect in
the palladium-hydrogen system can be accounted for by
the inclusion of anharmonicity only through the optic
mode vibrational frequencies, although other effects, such
as an isotope-dependent electronic structure, may not be
insignificant.

The present study makes use of the all-electron, full-
potential  linearized-augmented-plane-wave  (LAPW)
method'® to generate the electronic structure and total
energy of the palladium-hydrogen system. The results
are used to determine the anharmonic lattice dynamics
and the electron-phonon scattering properties needed to
calculate the superconducting transition temperature 7,.

It is important to note that our inclusion of the anhar-
monic lattice dynamics into the strong-coupling theory of
superconductivity is approximate. Although there has
been progress in developing a rigorous strong-coupling
theory of superconductivity which includes anharmonic
effects,’’ ~2! implementing such approaches in a realistic
quantitative manner has been limited by the computa-
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tional complexity involved. This is likely to change in
the future as there is increasing evidence that anharmoni-
city plays some role in superconductivity in the high-T,
oxides, and there has been a renewed interest in further
developing a theoretical and computational framework
for including anharmonicity in the spirit of Eliashberg
strong-coupling theory.”> In addition, several authors
have emphasized that the isotope effect is a rich and com-
plex phenomenon, strongly dependent on the details of
the system under investigation.?’

Finally, we mention that Elsasser et al. 2% have per-
formed total-energy studies of the palladium-hydrogen
system using mixed-basis pseudopotential methods to
study the cohesive properties and to generate diffusion
potentials. They also present results on the lattice dy-
namics of this system in the harmonic approximation.

The paper is organized as follows: Sec. II gives an
overview of the electronic structure, lattice dynamics,
and superconductivity methods that we have used; Sec.
III presents and discusses our results and compares with
previous work; and in Sec. IV we summarize the con-
clusions we draw from this work.

II. OVERVIEW
OF THE COMPUTATIONAL METHODS

A. LAPW computations

The electronic structure, total energies for frozen pho-
non displacements, and electron-phonon interaction
within the rigid-muffin-tin approximation (RMTA) of
PdH, PdD, and PdT were determined using the full-
potential LAPW method!® with the local-density approx-
imation for exchange and correlation. In this method no
shape approximations are made for either the core or
valence states and no pseudopotential approximation is
made. The basis set is a dual representation with plane
waves in the interstitial region joined smoothly onto
linear combinations of solutions of Schrodinger’s equa-
tion and energy derivatives of the solutions inside spheri-
cal “muffin tins” centered around each nucleus. The core
states are treated fully relativistically, and the semicore
and valence states are treated semirelativistically (without
spin-orbit interaction). Convergence parameters were
chosen to ensure accuracy of the total-energy differences
needed for the lattice-dynamics studies. Since we are
only considering zone-center optic modes in this paper,
the unit cells contain two atoms, a Pd and a H atom, but
the displacements remove inversion symmetry from the
space group, and the LAPW matrix is complex. For vi-
brations at other Brillouin-zone points, the methods dis-
cussed in this paper can be used, but a larger, periodically
repeated supercell would be required.

In the ground state, S phase PdH is in the rocksalt
structure with full cubic symmetry (48 symmetry opera-
tions). The zone-center optic mode is triply degenerate
with respect to vibrations in the x, y, and z directions.
However, when the atoms move from their equilibrium
positions the potential surface varies as a function of dis-
placement direction. Since the lattice dynamics involve
very large motions of the hydrogen isotopes, it was neces-
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sary to choose rather small sphere radii (kept fixed for all
of our phonon calculations) for both Pd and H so as to
avoid muffin-tin sphere overlap, and this in turn required
the use of a large basis set for convergence. For the
frozen phonon calculations, the muffin-tin sphere radii
chosen were Rp;=1.85 a.u. and Ry =1.05 a.u.,, with
RyK ,..,=5.5, and were kept the same for all lattice con-
stants and H displacements, yielding a basis set of ap-
proximately 280 plane waves. For the H displacements
in the (100), (110), or {111) directions, the symmetry
is reduced to tetragonal, orthorhombic, or rhombohedral,
respectively.

For the self-consistent iterations, special k points were
used with an 8 X 8 X 8 Cartesian mesh in the full Brillouin
zone for the valence window, and 4X4X4 in the sem-
icore window, which gives 20 and 1 respectively in an ir-
reducible segment of the first Brillouin zone (IBZ) for the
valence (semicore) states for the tetragonal (100) dis-
placements; 40 (respectively 2) for the orthorhombic
(110) displacements; 30 (respectively 2) for the rhom-
bohedral {(111) displacements; and 10 (respectively 1) for
the cubic structure.

For the density-of-states results needed to determine
some of the superconducting parameters, it is appropriate
to maximize the muffin-tin volumes so as to maximize the
charge in the muffin-tin spheres and reduce the errors in
the RMTA (see below). To achieve this we performed
separate self-consistent calculations for the undisplaced
lattice for the density-of-states calculations, choosing the
size of the H sphere radius to give touching, or nearly
touching muffin-tin spheres, and a relatively small inter-
stitial volume. A value of RyK ., of 7.0 was used for
the density-of-states and RMTA calculations. Rpy; was
kept fixed at 2.3795 a.u., and Ry had the values of 1.485,
1.406, and 1.364 45 a.u., for the lattice constants 7.729,
7.65, and 7.50 a.u., respectively. The muffin-tin radii
chosen for the @ =7.729 a.u. calculation exactly matched
the values used by Papaconstantopoulos et al. ¢ and al-
low a comparison of the present LAPW and the earlier
APW values of the electron-phonon coupling. Using the
self-consistent potentials for these sphere radii the eigen-
values were calculated on a mesh of 145 k points and
were then interpolated onto a mesh of 413 k points using
Fourier interpolation,25 and the densities of states were
determined using tetrahedral integration.

B. Lattice-dynamics methods

In the harmonic approximation, the LAPW total ener-
gies for a series of atomic displacements can be used to
map out the dynamical matrix and determine the har-
monic phonon frequencies. For the PdH system, our re-
sults indicate that the harmonic approximation is not ac-
curate for describing the lattice dynamics involving hy-
drogen motions (i.e., the optic modes), so that alternative
procedures must be used. Since a fully first-principles
description of the three-dimensional anharmonic oscilla-
tor in a solid is not available, we resort to a plausible set
of approximations whose efficacy is borne out by very
good agreement with experiment, as we will show below.

Our procedure for determining the hydride optic mode
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dynamics is as follows: (1) we determine the electronic
total energies as a function of H (assumed the same for D
or T) displacements in three high-symmetry directions,
(100), (110), (111); (2) we fit the results to polynomi-
als in hydrogen displacement coordinates, up to sixth or-
der, that satisfy the lattice symmetry, yielding a vibra-
tional potential surface; (3) a spherical average of this po-
tential is determined; (4) the spherical potential is used as
input to a one-dimensional Schrodinger equation solver,
with the respective reduced masses of the hydride, deu-
teride, or tritide, to determine the optic vibrational fre-
quencies of the three isotopes. The reduced mass takes
the form M, M, /(M,+M,), with M, the mass of Pd and
M, the mass of H, D, or T. Since the mass of the hydro-
gen isotopes is much smaller than that of Pd, the reduced
mass is very close to the hydrogen isotope mass. The fre-
quency is determined by taking the difference between
the ground and first excited states of the oscillator.

In the harmonic approximation for a cubic crystal, the
potential surface would not depend on direction. For the
higher-order terms needed for the anharmonicity this is
not the case. We will show, by comparing with a fourth-
order fit, that a fit to sixth order in the displacement com-
ponents gives well-converged anharmonic frequencies.

C. Determining the superconducting parameters

In order to determine the effect of the anharmonic hy-
drogen motions on the superconducting transition tem-
perature, and in particular to see whether the inverse iso-
tope effect can be accounted for by considering anhar-
monic phonons with the same electronic structure for all
three isotopes, we use the rigid-muffin-tin approxima-
tion?¢ together with an approximate approach for deter-
mining the resulting T,.%’

In the RMTA, the McMillan-Hopfield parameter 7 is
given by

N, =N(Ep){1?)
NI,le,s+l

z Ls+1 Ls

- mN(Ep) 4

>

(1)

with {(I2) the electron-ion matrix element, N(E) the to-
tal density of states at the Fermi level, N, the corre-
sponding angular momentum components of the density
of states (DOS), §, ; are scattering phase shifts at E, and
N{}' are single-scatterer DOS components defined in Ref.
26. I and s are angular momentum and site indices (Pd,
or H or D or T), respectively. Since the RMTA is a
muffin-tin theory, the spherically averaged self-consistent
LAPW potentials are used to evaluate the phase shifts
and single-scatterer DOS values.

The electron-phonon coupling constant A is related to
the Eliashberg spectral function a?F(w) by the relation

r=2 [ "la*F() /0w , )

with the sum rule
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7
2M,

J o’ Flwdo=3 3)

being satisfied.?®?° In relating the a’F(w) moments to
the phonon density of states, F(w), Klein, and co-
workers?’ proposed the following ansatz for compounds,

a generalization of McMillan’s?® “constant a* approxi-
mation:
s
A=Y A=
M2 0
and
e=1lsau,,
}\' N
[oF(0)do
2=
[[F(0)/0ldo

For a compound like PdH(D,T), where Pd is much
heavier than any of the hydrogen isotopes, the site-
decomposed phonon densities of states F (w) are, to a
good approximation, the acoustic and optic modes for Pd
or H (D or T), respectively.

For the transition temperatures, we make use of
Kresin’s strong-coupling formula given by*

T,=0.250[ exp(2/Ag)—1]712, )
Aeg=A—p*)[1+2Au*t(M)]7 1, (5)

with u* the Coulomb pseudopotential which must be es-
timated, and ?(A) a function having the approximate
value of 1.25 (see Ref. 30).

We estimate the optic phonon moments from the
anharmonic lattice dynamics that we have determined.
Note that in this work we do not consider any isotope
dependence of the 7’s for H, D, or T. That is, we investi-
gate whether the inverse isotope effect can be accounted
for solely by lattice-dynamics effects with the same un-
derlying electronic structure for the hydrogen isotopes.

For the Pd (acoustic mode) moments, we use the exper-
imental values, neglecting the small hydrogen isotope
dependence.’! This has a negligible effect on our con-
clusions.

The phonon moment for the optic mode, Q‘z,pt, must be
estimated from the results for the single zone-center BZ
point that we have calculated. We do this by scaling the
square of our anharmonic frequency by the factor of 1.28
which is the value we determined by comparing the
zone-center and phonon moment experimental results of
Rowe, et al.'* We note here that one of the advantages
of using our theoretical results for the anharmonic pho-
nons is that the calculations have been done for several
lattice constants and, as shown in Sec. III B, there is a
significant variation of the optic mode frequency with lat-
tice constant. We can therefore match the lattice dynam-
ics with the appropriate lattice constant corresponding to
the hydrogen stoichiometry under investigation. There-
fore, in this regard, the present work is an improvement
over using the experimental lattice dynamics which have
been limited to substoichiometric crystals with 7,.’s much
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lower than the maximum value.? 1114

There are several uncertainties in our approach for es-
timating the transition temperatures besides our assump-
tion of the same band structure for PdH, PdD, and PdT.
First, the RMTA is an approximation, albeit one which
has enjoyed a great deal of success in transition-metal sys-
tems.’> One of the sources of error is related to the fact
that there is a fairly large interstitial region where the po-
tential is accounted for as a constant in the RMTA. In
addition, the decomposition of a’F(w) that we use, dis-
cussed above, is approximate. Finally, we must assume
values for u*, and as we shall see, there is some sensitivi-
ty of the isotope effect results to u*. It is worth em-
phasizing, however, that the theory and analysis that we
are using is internally consistent for each isotope and lat-
tice constant, so we believe that the qualitative and
semiquantitative conclusions that we will draw are valid.

III. RESULTS AND DISCUSSION

A. Ground-state properties of the undisplaced lattice

An experimental study of the dependence of the lattice
constant of B-phase PdH, and PdD, as a function of
stoichiometry (x) has been presented by Schirber and
Morosin®® with a strong indication of large zero-point
motion effects as evidenced by the difference in lattice
constant for the hydride and deuteride, 4.090 and 4.084
A, respectively, for x =1. The tritide shows the same
trend, although tritium loading has been achieved up to
only x =0.81.%

Polynomial fits to our LAPW calculations give a total-
energy minimum at a cubic lattice constant of 7.66 a.u.
(4.05 A), without zero-point motion corrections, which is
slightly smaller than the experimental values for
stoichiometric PdH and PdD. Including zero-point
motion would further improve the theoretical agreement.
The bulk modulus we calculate is approximately 220
GPa, about 10% greater than experiment.3>3®

The energy bands and DOS’s of the hydrides are very
similar to those obtained by the muffin-tin APW method
by Papaconstantopoulos et al., ® who also used a different
version of the exchange-correlation potential. Reference
6 gives a full discussion of the electronic structure of pal-
ladium hydride. In Table I we compare our full-potential
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(LAPW) results for bandwidths and separations with
these previous results. There is good agreement with the
MT-APW calculations® and ours for the same lattice con-
stant, especially regarding the bandwidths, indicating
that the muffin-tin approximation is good for these ma-
terials. This is important to note since we have used the
muffin-tin RMTA to determine the superconducting pa-
rameters of the hydrides. The s-d separation difference
between the two calculations is somewhat larger than the
bandwidth differences, probably due to the different
exchange-correlation approximation used in the earlier
calculation.

It is also interesting to note the bandwidth pressure
dependencies shown in Table I, with our calculated
values of the dimensionless derivatives dlogW, , /9 logV
having the values of —0.67 and — 1.66, respectively, for
the s- and d-band widths. These values are indistinguish-
able from the values of —2/3 and —5/3 predicted by
Heine,’” based on general arguments for transition-metal
systems, and discussed by Svechkarev and Panfilov.*®

B. Optic mode vibrational frequencies

To determine the vibrational frequencies, the total-
energy changes versus hydrogen displacements were
fitted with polynomial functions in (x,y,z), the com-
ponents of the displacement vector d. For each of the
lattice constants considered, total energies for five hydro-
gen displacements were used for each of three directions,
(100), (110), and {111). The polynomial terms includ-
ed satisfy the cubic symmetry of the undisplaced space
lattice and have the form

V,=A4d*+B,d*+C (x*+y*+2z%) , (6)
Ve=Ae¢d’+Bed*+ Cy(x*+y*+2z4)+Dd®
+EdXx*+y*+z4)+Fex?y22?, @)

with d?=(x2+y2+2z?) .

The fourth and sixth-order expansion coefflicients are
given in Table II. Finally, a spherical average of the
fourth- and sixth-order potentials was taken, resulting in
the following average potentials:

TABLE 1. Comparison of selected bandwidths and band separations for the PdH system from the
present work and the muffin-tin (MT) APW calculations of Ref. 6. LDA denotes local-density approxi-
mation. The lattice constants are in a.u., and the bandwidths are in Ry. Also shown are the pressure
dependencies of the bandwidths, P, and Py, defined as dlogW;,,/d logV, with W the bandwidth and V
the volume. See Table I of Ref. 6 for a definition of the bandwith and separation parameters.

Present work Ref. 6
(LAPW-LDA) (MT-APW)
Lattice constant 7.420 7.500 7.729 7.729
s-band width 0.932 0.912 0.855 0.867
d-band width 0.407 0.386 0.324 0.333
s-d separation 0.577 0.565 0.509 0.546
s-band separation 1.093 1.051 0.933 0.936
P,=—0.66~ — %
P;=—1.66~— %
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TABLE II. Coefficients of the displacement potential fits for hydrogen displacements, following the notation of Egs. (6) and (7), for
three different lattice constants in a.u. (angstroms). The units of the coefficients are such that the displacement potentials are in meV

if the displacements are in bohrs.

Lattice
constant A, B, C, Ag By Cs Dy Eg Fg
7.729 17.40 —46.40 229.30 10.04 23.22 96.50 —119.50 240.68 725.01
(4.090 A)
7.65 48.03 —60.59 260.96 39.62 14.59 114.81 —132.67 268.73 816.89
(4.048 A)
7.50 100.58 —68.58 326.17 104.26 6.50 144.47 —184.72 379.80 1041.76
(3.969 A)
(V,)=R,d*+S,d*, (8)  from approximately 4.05 to 4.09 A (7.65 to 7.73 a.u.), and
_ ) 4 6 our optic mode results show an approximate 10% varia-
(Ve)=Red*+S4d*+Ted", © tion, decreasing with increasing volume. This is the

with the coefficients given in Table III.

The fitted spherical potentials, assumed the same for
all three hydrogen isotopes, were then used to determine
the one-dimensional oscillator eigenstates for the PdH,
PdD, and PdT optic modes using the reduced center of
mass for each case. The solutions were obtained numeri-
cally from a one-dimensional (1D) Schrodinger equation
solver. The outputs were the optic mode frequencies and
displacement vectors for the anharmonic oscillators. In
Table IV we show the calculated frequencies for the
fourth-order and sixth-order fits as well as the rms dis-
placement (for the ground state) for each of the isotopes
for the three different lattice constants. From Table IV
we see first that the results for the fourth- and sixth-order
fits are the same to approximately 1%, so that we are well
converged for the latter. The remainder of the results in
this paper are given in terms of the sixth-order results.
Next we note a strong lattice-constant dependence of the
frequencies and rms displacements as might be expected
for a strongly anharmonic lattice. The lattice constant
closest to the experimental lattice-dynamics measure-
ments is 7.65 a.u. (4.048 A) and the agreement with ex-
periment>? is excellent for the calculated I'-point optic
mode.

In comparing our results with experiment, we do not
explicitly take into account the effects due to sub-
stoichiometry implicit in the experimental results. In the
range of stoichiometry where the palladium-hydrogen
system is superconducting, the lattice constant varies

direction expected for a solid under compression or ex-
pansion (a positive Griineisen constant). Experimentally
it is observed that the optic mode frequencies are fairly
constant until very close to full stoichiometry. This indi-
cates that the explicit effect of substoichiometry on the
optic modes (variation of the force constants with
stoichiometry), not accounted for here, is at most a 10%
effect, opposite to the pure volume effect included in our
calculations. The relative variations in optic mode fre-
quencies due to substoichiometry are, to a good approxi-
mation, likely to be independent of hydrogen isotope, so
that our conclusions about the inverse isotope effect are
probably little affected.

To illustrate the inadequacy of the harmonic approxi-
mation for the optic modes we show in Fig. 1 plots of the
sixth-order anharmonic potentials for the (100), (110),
and {111) directions, the spherically averaged potential
used in the one-dimensional oscillator calculation, and
the harmonic (second-order) part of the spherical poten-
tial. For displacements of the order of the rms values, it
is seen from Fig. 1 that there are very substantial
differences between the anharmonic and harmonic poten-
tials. In fact, using only the harmonic part of the poten-
tial in the oscillator solution for the 7.65 lattice-constant
case yields values of 34.59, 24.47, and 20.08 meV for the
hydride, deuteride, and tritide frequencies, respectively,
much smaller than the anharmonic values shown in Table
IV. The harmonic approximation is inadequate for
studying the vibrational spectra of the palladium-
hydrogen system. The discrepancy between the harmon-

TABLE III. Coefficients of the spherically averaged displacement potential, in meV, for hydrogen
displacements, following the notation of Egs. (8) and (9), for three different lattice constants in a.u.
(angstroms). The units of the coefficients are such that the displacement potentials are in units of meV

if the displacements are in bohrs.

Lattice

constant R, Ss Rg¢ Se Te
7.729 17.40 91.18 10.04 81.12 31.81
(4.090 A)

7.65 48.03 95.83 39.62 83.48 36.36
4.048 A)

7.50 100.58 127.13 104.26 93.18 44.15

(3.969 A)
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ic and anharmonic values decreases, as expected, in going
from the hydride — deuteride — tritide. This is con-
sistent with the smaller rms displacements and decreasing
anharmonicity in this sequence going to the heavier
masses of the hydrogen isotopes. Figure 1 also shows the
classical turning point for the sixth-order fit for the
ground-state energy of the hydride. This isoenergy sur-
face has the shape of a rounded cube.

Finally in Table IV we show a least-squares fit to the
frequency in terms of the mass dependence of the hydro-
gen isotope for each lattice constant of the form
©=BM P with B and B constants. This simple fit is ex-
cellent, with rms deviation of a few tenths of a percent.
For a harmonic lattice, 8 would be 1/2; while for the
present results there are significant variations from this
value with 8> 1/2 and increasing with increasing volume
(increasing hydrogen-palladium nearest-neighbor separa-
tion) heading toward the value 8=1.0 for a particle in
box.

6.0
(@) lattice constant = 7.729 a.u.
/
< 4.0 <100> displacements ____ //
< <M10> displacements ........ /
g <!> displacements __.__ / /.
IS spherical average // /
® 204 harmonic values __..__ 7 /7
AP ] P
OO T I I
0.0 0.1 0.2 0.3 0.4
Hydrogen Displacerment (a.u.)
25.0
(¢) lattice constant = 7.50 a.u.
20.04 <100> displacements ____ )
<110> displacements ........
E 1s.04 <!> displacements __.___
%/ spherical average
I ic val . 4
§ 1001 harmonic values __ y 2
a /
5.0
0.0 T T T
0.0 0.1 0.2 0.3 0.4

Hydrogen Displacement (a.u.)

BARRY M. KLEIN AND RONALD E. COHEN 45

C. rms displacements and Griineisen parameters

The rms displacements are very large, from 7% to
nearly 10% of the nearest-neighbor distance, scaling
down inversely with isotope mass from the hydride to the
tritide, as expected. Glinka et al. ! extracted the aver-
age square displacement (u2) for the zone-center optic
mode in PdD; ¢;. They found a value of 0.026 + 0.003
A? independent of direction . This compares very
favorable with our theoretical value of 0.028 A? for the
7.65 a.u. (4.05 A) lattice-constant results shown in Table
Iv.

The estimated Griineisen parameters for the I'-point
optic mode are shown in Table V. These were deter-
mined from the standard expression,

_dne
dlnV’

Y™ (10)
with the volume dependence determined from a simple,

12.0

(b) lattice constant = 7.650 a.u.

10.0
<100> displacements /

< 80 <I10> displacements .......
[0}
£ <111> displacements _.___ I
T 6.0 . A
= spherical average
= P 9 y 74
5 rmonic v . A
5 Lo harmonic values __ —/ 4

2.0

00 T T 1

0.0 0.1 0.2 0.3 0.4

Hydrogen Displacement (a.u.)

FIG. 1. (a) — (c) Sixth-order (see text) hydrogen displacement potential energies (change in total energy as a function of hydrogen
displacement from the equilibrium rocksalt structure positions corresponding to a zone-center optic mode) for three different lattice
constants. (d) Classical turning points for the ground-state vibrational energy in PdH, at a=7.729 a.u. The isopotential surface looks

like a rounded cube. The outer box is 2 bohrs on each edge.
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but very accurate linear with lattice-constant fit of the 80.0
optic mode frequency shown in Fig. 2, so that y; is given
by
By 70.0
Ye= T3 (11) PdH
with 60.0
/>\
wo=A +Ba . (12) g
A —d
These Griineisen parameters scale inversely with the iso- 3 s0.04
topic hydride masses and have rather large values which §
are related to the anharmonicity. For comparison, g PdD
Geerken et al.®® estimate average Griineisen parameters =
for PAH(D) that are close to our calculated values. 40.07
D. Superconducting parameters
Following the procedures outlined in Sec. II C, we have 30.0 PdT
calculated 7, A, and T, as a function of u* for the three
different lattice constants. Tables VI and VII and Fig. 3
show some of our results and the experimental values® 20.0 ) T T
7.4 7.5 7.6 7.7 7.8

for the maximum T,’s observed. No adjustments were
made to the theoretical electron-phonon parameters to
force quantitative agreement with any measurements. FIG. 2. T'-point optic mode frequency vs cubic lattice con-
The experimental values of 7, are listed below the stant for PdH, PdD, and PdT.

c

Lattice Constant (a.u.)

TABLE IV. Optic mode frequencies @ (meV) and rms displacements (u?2)!/? (a.u.) for PdH, PdD,
and PdT. The numbers in parentheses for the 7.65-a.u. lattice-constant results are the experimental re-
sults for lattice constants very close to this value. Below the rms displacement values, which are for the
oscillator ground state, is the percent of the nearest-neighbor hydrogen-palladium separation. The last
line in each panel shows a fit to the frequency in terms of a power of the isotopic reduced mass.

Lattice @ )
constant (fourth-order fit) (sixth-order fit) (u?)t?
PdH 51.14 51.82 0.379
(9.8%)
7.729 a.u.
PdD (4.090 A) 33.07 32.75 0.339
(8.8%)
PdT 25.76 25.19 0.317
(8.2%)
©=51.07M ~0636¢
PdH 58.46 58.61 (56.0)* 0.357
(9.3%)
7.650 a.u.
PdD (4.048 A) 38.69 38.04 (37.6)* 0.315 (0.305)®
(8.2%)
PdT 30.57 29.76 (30.1)? 0.293
(7.7%)
0=758.38M ~0-6019
PdH 72.05 72.16 0.322
(8.6%)
7.500 a.u.
PdD (3.969 A) 48.53 48.35 0.280
(7.5%)
PdT 38.75 38.56 0.258
(6.9%)

©=71.95M ~*57

# Experiment from Refs. 8—10, 14,
° Experiment from Ref. 11.
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TABLE V. Griineisen parameters as a function of lattice constant for the palladium-hydrogen sys-
tems. These were determined from linear fits to the frequency vs lattice constant as discussed in the
text.

Griineisen parameter
Lattice constant

(a.u.) PdH PdD PdT
7.729 4.43 5.37 5.97
7.650 3.87 4.57 5.01
7.500 3.08 3.53 3.79

TABLE VI. Calculated electron-phclmon interaction parameters 7 for the acoustic and optic modes, and calculated A for three
different lattice constants. 7 isin eV/A" and a is in a.u.

PdH PdD PdT
a nac nopt A'ac }‘opt }" A'ac }"opl }\ )‘ac }"opt K
7.729 0.898 0.342 0.147 0.417 0.564 0.147 0.528 0.675 0.147 0.601 0.748
7.650 0.975 0.348 0.160 0.332 0.492 0.160 0.398 0.558 0.160 0.438 0.598
7.500 1.140 0.368 0.187 0.231 0.418 0.187 0.260 0.447 0.187 0.276 0.464

TABLE VII. Calculated superconducting transition temperatures T, (K) for the hydride, deuteride,
and tritide for two different values of the Coulomb pseudopotential u* and three different lattice con-
stants a (a.u.). A third value of u*=0.115, chosen to match the theoretical and experimental T, values
for PdH, is shown for the @ =7.729 a.u. lattice constant.

a u* T, (PdH) T, (PdD) T, (PdT)
7.729 0.13 6.59 7.89 8.25
0.115 8.00 9.12 9.34
0.10 9.61 10.47 10.52

8.0% 10.0* ~11.0°
7.650 0.13 3.93 4.60 4.77
0.10 6.39 6.76 6.72
7.500 0.13 1.78 1.86 1.83
0.10 3.48 3.34 3.17

# Experiment from Ref. 39.

TABLE VIII. Calculated harmonic and anharmonic isotope effect exponents @, compared with «a
determined from the experimental 7. values. Results are for a lattice constant of 7.729 a.u. and
* ___
u”=0.115.

Qharm Qanharm expt
PdD 0.44 —0.19 —0.32
PdT 0.43 —0.14 —0.29

TABLE IX. Calculated values of 7. /0P in K/GPa.

PdH PdD PdT
u*=0.13 —0.326 —0.405 —0.429
u*=0.10 —0.402 —0.465 —0.477
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FIG. 3. Calculated superconducting transition temperature
T., for PdH, PdD, and PdT for several different values of u*
compared with experiment. Also shown are theoretical values
for harmonic phonons (see text). Lines connecting the points
are guides for the eye.

a =7.729 a.u. results as this lattice constant is the closest
to that of the fully stoichiometric, highest-T, compounds.
We note that experimentally there is a systematic de-
crease of the observed T,’s with hydrogen vacancies,*
and this correlates with a decreasing lattice constant.’*34
This trend is reproduced in the theoretical calculations.

Comparing our calculated 1 values with the APW re-
sults of Papaconstantopoulos et al.® for the a =7.729
a.u. calculations we find good agreement, ~10%, with
their 7, =0.865 and 7,,,=0.392. Differences can be as-
cribed to the present full-potential methods and to our
more accurate k-point sampling for the DOS. Additional
differences in the A values are a result of the approximate
treatment of the phonon moments in the earlier work
(there were limited experimental results).

The only free parameter in the theory is u*. Table VII
presents T, results for u* values of 0.13 and 0.1, within
the range of ‘“‘accepted” values, and a third value of
1*=0.115 chosen to match the theoretical value of T,
for PdH with a =7.729 a.u. with the experimental
value.’” Note that the strong-coupling theory yields a
significant variation of the isotope effect with u* as dis-
cussed recently.!%21:23

From the @ =7.729 a.u. results it is apparent that the
major portion of the inverse isotope effect is accounted
for by the anharmonicity of the hydrogen isotope vibra-
tions. This is perhaps most clear from the results shown
in Table VIII and Fig. 3 where we compare results for
harmonic and anharmonic phonons as they affect T, and
the isotope exponent a. We have defined the harmonic
phonons to be those obtained by scaling the hydride optic
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mode frequency value by M 143 for the deuteride and tri-

tide.

For decreasing lattice constant (increasing pressure)
the inverse isotope effect tends to decrease. Using our
calculated T, as a function of volume, together with our
calculated equation of state, we find values of 9T, /0P
shown in Table IX. The second derivative 3°T, /dP? is
approximately 0.015 K/GPa2. The strong dependence on
volume of the optic mode dynamics and the resultant
variation of 7. accounts for some of the differences be-
tween the present results and previous theoretical esti-
mates of the isotope effect.5!>14

It has been argued that the feedback of the anharmoni-
city of the hydrogen isotope motion into the electronic
structure may be important for explaining the inverse iso-
tope effect in the palladium-hydrogen system.'?~'* Most
recently, Rowe et al.'* argued that there are major
discrepancies between the isotope effect results deter-
mined following a procedure like ours (but using the ex-
perimental phonon frequencies), and the experimental T,
results. The major differences in the present analysis are
(1) that we used our calculated optic mode frequencies for
the stoichiometric lattice constant, and there is a substan-
tial lattice-constant variation of this frequency; (2) we
have found a substantial variation of the isotope effect ex-
ponent with u*; and (3) we used our updated values of 7.

Although the present results do not rule out the possi-
bility that electronic-structure variations with hydrogen
isotope may have some quantitative importance for the
inverse isotope effect, the indications are that these kinds
of effects will be secondary to the effect of the anharmon-
ic lattice dynamics.

Going beyond the present set of approximations would
be very difficult due to the lack of a complete theory of
superconductivity in anharmonic crystal. Starts in this
direction have been made, motivated by the “anomalous”
isotope effects seen in the high-T,. superconducting ox-
ides.22! The vibrational frequency and electron-phonon
interaction results presented here are likely to be impor-
tant ingredients in more sophisticated calculations.

IV. CONCLUSIONS

Hydrogen anharmonicity is intrinsic to superconduc-
tivity in the palladium-hydrogen system and for other
properties as well. We have shown in this work that a
first-principles description of the anharmonic optic
modes of PdH, PdD, and PdT may be derived from
total-energy electronic-structure calculations with very
good agreement with experiment for the zone-center
values. Using these results, and assuming no variation in
the electron-phonon interaction parameters with hydro-
gen isotope, we were able to account for the major part of
the inverse isotope effect, although some quantitative
discrepancy remains, and we must estimate the value of
u* empirically.

Our present LAPW-derived superconductivity results
are also in good agreement with earlier muffin-tin APW
studies which used experimental values of the lattice dy-
namics.’ This is consistent with the fact demonstrated
here that the APW electronic structure is in good agree-
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ment with the present more accurate full-potential
LAPW results.

Although the approach that we have used appears
reasonable, and shows good agreement with experimental
trends, it would be desirable to utilize a more rigorous
formulation of anharmonic superconductivity theory in
order to corroborate our conclusions that changes in the
electronic structure with hydrogen isotope are not impor-
tant for 7,. Until this is done, effects such as the latter
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cannot be definitely excluded from contributing to the
isotope effect.
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FIG. 1. (a) — (c) Sixth-order (see text) hydrogen displacement potential energies (change in total energy as a function of hydrogen
displacement from the equilibrium rocksalt structure positions corresponding to a zone-center optic mode) for three different lattice
constants. (d) Classical turning points for the ground-state vibrational energy in PdH, at a=7.729 a.u. The isopotential surface looks
like a rounded cube. The outer box is 2 bohrs on each edge.



